Developing a Comprehensive Aviation Safety Data Analysis System: A Focus on Crew Reporting
Analytics with Excel, Python, and Power BI

By Carlos FC
Executive Summary

Aviation safety depends fundamentally on the timely collection, processing, and analysis of crew-
generated safety reports, including Air Safety Reports (ASRs) and cabin crew incident reports. These
critical data sources provide the aviation industry with real-time insights into operational hazards,
safety trends, and emerging risks that traditional monitoring systems cannot capture. This
comprehensive guide presents a specialized data analysis system designed specifically for aviation
safety professionals, focusing on immediate report processing and trend identification capabilities
that transform raw crew reports into actionable safety intelligence.

The system leverages the complementary strengths of Excel for data validation and initial processing,
Python for advanced analytics and machine learning-based trend detection, and Power Bl for real-time
safety dashboards and executive reporting. This integrated approach enables aviation safety managers
to process crew reports within minutes of submission, automatically identify safety trends, and provide
predictive insights that prevent incidents before they occur 1 2.

Modern aviation operations generate thousands of crew safety reports monthly, each containing
critical safety information that requires immediate assessment and long-term trend analysis.
Traditional manual processing methods create dangerous delays in identifying emerging safety issues,
while fragmented analytical approaches prevent comprehensive trend identification across multiple
data sources. The proposed system addresses these challenges by providing real-time processing
capabilities that can handle crew reports as they are submitted, combined with sophisticated trend
identification algorithms that detect patterns across historical data, crew types, aircraft operations,
and safety categories 3 4.

Chapter 1: Understanding Aviation Crew Reporting Systems
1.1 The Critical Role of Crew Safety Reports

Aviation crew members—both flight crew and cabin crew—serve as the frontline observers of aviation
safety, experiencing operational conditions that automated systems cannot detect. Their safety reports
provide irreplaceable insights into human factors, procedural gaps, equipment anomalies, and
environmental hazards that affect flight safety 1 5. As an example, the Aviation Safety Reporting System
(ASRS), operated by NASA for the FAA, represents the world's largest repository of voluntary safety
information, processing over 100,000 reports annually from aviation professionals 6 7.

Flight Crew Reporting Categories encompass a broad spectrum of safety observations:
e Aircraft systems malfunctions and anomalies
e Air traffic control communication issues
e Weather-related operational challenges
e Airport infrastructure and ground support problems
e Maintenance and airworthiness concerns
e Human factors and crew resource management issues
Cabin Crew Reporting Focus Areas include unique safety perspectives:
e Passenger safety and security incidents
e Emergency equipment functionality
e Cabin environment and pressurization issues
e Crew coordination and communication challenges
e Ground handling and boarding safety concerns
e Medical emergencies and passenger assistance needs 5 8
1.2 Immediate Processing Requirements

The aviation safety community recognizes that the value of crew safety reports diminishes rapidly with
processing delays. Critical safety information must be identified and acted upon within hours of report
submission to prevent similar occurrences and mitigate emerging risks 9.

Immediate processing requirements include:

Automated Intake and Validation: Digital crew reporting systems must automatically validate report
completeness, categorize safety events, and flag high-priority issues for immediate attention 2 9.

Real-Time Risk Assessment: Advanced algorithms must evaluate each report's safety significance,
comparing new reports against historical patterns to identify unusual or critical events requiring
immediate investigation 10.

Instant Alert Generation: Safety management systems must generate automated alerts to relevant
personnel when reports indicate immediate safety risks, regulatory compliance issues, or recurring
problem patterns 11 10.

Seamless Integration: Crew reports must integrate immediately with existing safety management
systems, maintenance tracking systems, and operational databases to provide comprehensive safety
intelligence 12 13.

1.3 Trend Identification Challenges

Aviation safety trends often emerge gradually across multiple reports, aircraft types, operational
phases, and time periods. Traditional analysis methods struggle to identify these subtle patterns,
particularly when dealing with:

Multi-Dimensional Pattern Recognition: Safety trends may manifest across combinations of crew
type, aircraft model, operational phase, weather conditions, and airport characteristics, requiring
sophisticated analytical approaches 4 14.

Temporal Pattern Analysis: Some safety trends appear only when analysing data across specific time
periods, seasonal patterns, or operational cycles that span months or years 14.

Cross-Categorical Trend Detection: Emerging safety issues may involve relationships between different
safety categories, such as maintenance issues correlating with specific operational phases or crew
fatigue patterns relating to scheduling practices 4.

Predictive Trend Identification: The most valuable trend analysis identifies emerging safety issues
before they fully manifest, requiring predictive analytics capabilities that can recognize early warning
indicators 15 10.

Chapter 2: Excel as the Foundation for Crew Report Processing
2.1 Advanced Excel Capabilities for Safety Data Management

Excel serves as the cornerstone of the crew reporting analysis system, providing robust data validation,
initial processing, and quality assurance capabilities that ensure clean, reliable data for advanced
analytics. Modern Excel versions offer sophisticated features specifically applicable to aviation safety
data management 16.

Power Query for Multi-Source Integration: Excel's Power Query functionality enables seamless
integration of crew reports from various sources including digital reporting systems, email-based
submissions, and legacy paper-based reports converted to digital formats. For aviation safety
applications, Power Query can automatically connect to:

e ASRS database exports

e Internal airline safety reporting systems

e Crew scheduling and flight operations databases
e Maintenance tracking systems

e Weather and operational data sources

Advanced Data Validation for Safety Reports: Excel's validation capabilities ensure data consistency
and completeness in crew safety reports:

' VBA Code for Aviation Safety Report Validation
' Validates crew safety report data and flags incomplete or inconsistent entries
Sub ValidateCrewSafetyReports()

Dim ws As Worksheet

Dim lastRow As Long

Dim i As Long

Dim validationErrors As Collection

Set validationErrors = New Collection

Set ws = ActiveSheet

lastRow = ws.Cells(ws.Rows.Count, "A").End(xIUp).Row

' Validate essential safety report fields
For i =2 To lastRow
' Check for complete crew identification
If ISEmpty(ws.Cells(i, 2).Value) Then ' Crew Type column

validationErrors.Add "Row " & i & ": Missing crew type identification"

End If

' Validate incident date and time
If Not IsDate(ws.Cells(i, 3).Value) Then ' Incident Date column
validationErrors.Add "Row " & i & ": Invalid or missing incident date"

End If

' Check safety category classification
If IsSEmpty(ws.Cells(i, 5).Value) Then ' Safety Category column
validationErrors.Add "Row " & i & ": Missing safety category classification"

End If

' Validate narrative completeness (minimum 50 characters)
If Len(ws.Cells(i, 8).Value) < 50 Then ' Narrative column
validationErrors.Add "Row " & i & ": Insufficient narrative detail"

End If

' Check for mandatory fields based on safety category
Select Case ws.Cells(i, 5).Value
Case "Aircraft Systems"
If IsSEmpty(ws.Cells(i, 10).Value) Then ' Aircraft Type column
validationErrors.Add "Row " & i & ": Missing aircraft type for systems report"
End If
Case "Ground Operations"
If IsSEmpty(ws.Cells(i, 11).Value) Then ' Airport Code column
validationErrors.Add "Row " & i & ": Missing airport code for ground operations"
End If
End Select

Next i

' Generate validation report
If validationErrors.Count > 0 Then
CreateValidationReport validationErrors
Else
MsgBox "All crew safety reports passed validation checks!"

End If

End Sub

' Function to create validation error report

Sub CreateValidationReport(errors As Collection)
Dim errorWs As Worksheet
Set errorWs = ThisWorkbook.Worksheets.Add

errorWs.Name = "Validation_Errors_" & Format(Now(), "yyyymmdd_hhmm")

errorWs.Cells(1, 1).Value = "Validation Errors Report"
errorWs.Cells(1, 1).Font.Bold = True
errorWs.Cells(2, 1) Value = "Generated: " & Now()

Dim i As Long
For i =1 To errors.Count
errorWs.Cells(i + 3, 1).Value = errors(i)

Next i

' Format error report

errorWs.Columns("A").AutoFit

errorWs.Range("A1").Font.Size = 14
End Sub

Automated Safety Categorization: Excel formulas can automatically categorize crew reports based
on keywords and content analysis:

text
' Function for automatic safety category assignment
Function CategorizeCrewReport(narrative As String, crewType As String,
flightPhase As String) As String
Dim upperNarrative As String

upperNarrative = UCase(narrative)

' Flight deck specific categories
If crewType = "Flight Crew" Then
If InStr(upperNarrative, "ENGINE") > 0 Or InStr(upperNarrative, "HYDRAULIC") > 0 Then
CategorizeCrewReport = "Aircraft Systems"
Elself InStr(upperNarrative, "ATC") > 0 Or InStr(upperNarrative, "CLEARANCE") > 0 Then

CategorizeCrewReport = "Air Traffic Control"

Elself InStr(upperNarrative, "WEATHER") > 0 Or InStr(upperNarrative, "TURBULENCE") > 0 Then
CategorizeCrewReport = "Weather Related"

Elself InStr(upperNarrative, "APPROACH") > 0 Or InStr(upperNarrative, "LANDING") > 0 Then
CategorizeCrewReport = "Flight Operations"

Else
CategorizeCrewReport = "General Flight Safety"

End If

' Cabin crew specific categories
Elself crewType = "Cabin Crew" Then
If InStr(upperNarrative, "PASSENGER") > 0 Or InStr(upperNarrative, "PAX") > 0 Then
CategorizeCrewReport = "Passenger Safety"

Elself InStr(upperNarrative, "EMERGENCY") > 0 Or InStr(upperNarrative, "EVACUATION") >0
Then

CategorizeCrewReport = "Emergency Procedures"
Elself InStr(upperNarrative, "CABIN") > 0 Or InStr(upperNarrative, "GALLEY") > 0 Then
CategorizeCrewReport = "Cabin Systems"
Elself InStr(upperNarrative, "MEDICAL") > 0 Or InStr(upperNarrative, "INJURY") > 0 Then
CategorizeCrewReport = "Medical Emergency"
Else
CategorizeCrewReport = "General Cabin Safety"
End If
Else
CategorizeCrewReport = "Uncategorized"
End If

End Function

2.2 Real-Time Processing Capabilities in Excel

Excel's real-time processing capabilities enable immediate analysis of crew safety reports as they are
submitted through digital reporting systems:

Live Data Connections: Excel can establish live connections to crew reporting databases, enabling real-
time data refresh and immediate processing of new reports 17.

Automated Processing Workflows: VBA macros can create automated workflows that process new
crew reports immediately upon system detection:

' Automated crew report processing workflow
Sub ProcessNewCrewReports()
Application.EnableEvents = False

Application.ScreenUpdating = False

Dim sourceData As Worksheet
Dim processedData As Worksheet

Dim dashboardData As Worksheet

Set sourceData = ThisWorkbook.Worksheets("Raw_Crew_Reports")
Set processedData = ThisWorkbook.Worksheets("Processed_Reports")
Set dashboardData = ThisWorkbook.Worksheets("Dashboard_Data")

' Refresh source data from reporting system

sourceData.QueryTables.Refresh BackgroundQuery:=False

' Process new reports
Dim lastProcessedRow As Long

Dim newDataStartRow As Long

lastProcessedRow = processedData.Cells(processedData.Rows.Count, 1).End(xIUp).Row

newDataStartRow = sourceData.Cells(sourceData.Rows.Count, 1).End(xIUp).Row

' Validate and process new reports

If newDataStartRow > lastProcessedRow Then
ValidateCrewSafetyReports
UpdateTrendAnalysis
RefreshDashboardMetrics
CheckCriticalAlerts

End If

Application.EnableEvents = True
Application.ScreenUpdating = True
End Sub

' Function to update trend analysis calculations
Sub UpdateTrendAnalysis()
Dim ws As Worksheet
Set ws = ThisWorkbook.Worksheets("Trend_Analysis")

' Calculate daily report volumes by crew type

ws.Range("B2").Formula =
"=COUNTIFS(Processed_Reports[Date], TODAY(),Processed_Reports[Crew_Type],""Flight Crew"")"

ws.Range("B3").Formula =
"=COUNTIFS(Processed_Reports[Date],TODAY(),Processed _Reports[Crew_Type],""Cabin Crew"")"

' Calculate safety category trends

ws.Range("B5").Formula = "=COUNTIFS(Processed_Reports[Date],"">=""& TODAY()-
30,Processed_Reports[Safety Category],""Aircraft Systems"")"

ws.Range("B6").Formula = "=COUNTIFS(Processed_Reports[Date],"">=""&TODAY()-
30,Processed_Reports[Safety_Category],""Passenger Safety"")"

ws.Range("B7").Formula = "=COUNTIFS(Processed_Reports[Date],"">=""& TODAY()-
30,Processed_Reports[Safety_Category],""Emergency Procedures"")"

" Update rolling averages for trend detection
UpdateRollingAverages
End Sub

2.3 Excel-Based Trend Detection Algorithms

Excel's analytical capabilities extend to sophisticated trend detection through statistical analysis and
pattern recognition:

Statistical Process Control for Safety Metrics: Excel can implement control charts and statistical
process control techniques to identify unusual patterns in crew reporting data:

' Function to calculate control limits for safety reporting trends
Function CalculateControlLimits(dataRange As Range) As Variant
Dim mean As Double
Dim standardDev As Double

Dim controlLimits(1 To 2) As Double

mean = Application.WorksheetFunction.Average(dataRange)

standardDev = Application.WorksheetFunction.StDev(dataRange)

' Calculate upper and lower control limits (3 sigma)
controlLimits(1) = mean + (3 * standardDev) ' Upper Control Limit

controlLimits(2) = mean - (3 * standardDev) ' Lower Control Limit

CalculateControlLimits = controlLimits

End Function

' Trend detection using moving averages
Sub DetectSafetyTrends()
Dim ws As Worksheet

Set ws = ThisWorkbook.Worksheets("Trend_Analysis")

Dim dataRange As Range

Set dataRange = ws.Range("C2:C31") ' 30 days of data

' Calculate 7-day and 30-day moving averages

Dim i As Long

Fori=8To 31
ws.Cells(i, 5).Formula = "=AVERAGE(C" & (i-6) & ":C" & i & ")" ' 7-day MA
ws.Cells(i, 6).Formula = "=AVERAGE(C2:C" & i & ")" ' Cumulative average

Next i

' Detect trend patterns
Fori=15To 31

If ws.Cells(i, 5).Value > ws.Cells(i-1, 5).Value * 1.2 Then

ws.Cells(i, 7).Value = "INCREASING TREND"
ws.Cells(i, 7).Interior.Color = RGB(255, 200, 200) ' Light red
Elself ws.Cells(i, 5).Value < ws.Cells(i-1, 5).Value * 0.8 Then
ws.Cells(i, 7).Value = "DECREASING TREND"
ws.Cells(i, 7).Interior.Color = RGB(200, 255, 200) ' Light green
End If
Next i

End Sub

Chapter 3: Python for Advanced Crew Report Analytics
3.1 Python's Role in Aviation Safety Analytics

Python emerges as the analytical powerhouse for crew report processing, providing capabilities that
far exceed traditional spreadsheet analysis. For aviation safety applications, Python's strength lies in
processing large volumes of unstructured crew narratives, implementing machine learning algorithms
for pattern recognition, and providing real-time analytical capabilities that can process reports as they
are submitted 18 14.

Natural Language Processing for Crew Narratives: Python's NLP libraries enable sophisticated analysis
of crew report narratives, extracting safety-relevant information that traditional keyword searches
cannot identify 19 20.

Machine Learning for Pattern Recognition: Advanced algorithms can identify subtle safety trends
across multiple dimensions simultaneously, detecting patterns that would be invisible to manual
analysis 15 14.

Real-Time Processing Capabilities: Python's streaming data processing capabilities enable immediate
analysis of crew reports as they are submitted, providing instant safety intelligence 21 10.

3.2 Comprehensive Crew Report Processing System

The following Python implementation demonstrates a complete crew report processing and trend
analysis system:

import pandas as pd

import numpy as np

from datetime import datetime, timedelta

import re

from collections import Counter

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from textblob import TextBlob

import nltk

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize, sent_tokenize
from nltk.stem import WordNetLemmatizer

import warnings

warnings.filterwarnings('ignore')

class CrewReportAnalyzer:
def _init_ (self):

self.crew_reports = None

self.processed_reports = None

self.trend_metrics = {}

self.safety_categories = {
'Aircraft Systems': ['engine’, 'hydraulic', 'electrical’, 'avionics', 'system’', 'malfunction'],
'Flight Operations': ['approach’, 'landing’, 'takeoff, ‘altitude’, 'navigation', 'flight'],
'Air Traffic Control': ['atc', 'clearance’, '‘communication’, 'controller’, 'frequency'],
'Weather Related': ['weather', 'turbulence’, 'wind', 'storm’, 'ice’, 'fog'l,
'Passenger Safety': ['passenger’, ‘pax’, 'injury’, 'behavior', 'medical’, 'assistance'],
'Emergency Procedures': ['emergency’, 'evacuation’, 'fire', 'smoke', 'alarm’, 'abort'],
'Ground Operations': ['ground’, 'gate’, 'ramp’, 'baggage’, 'boarding’, 'catering'],

'Cabin Systems': ['cabin’, 'galley’, 'lavatory’, 'seats’, 'lighting', 'ventilation']

Initialize NLP components
nltk.download('punkt’, quiet=True)
nltk.download('stopwords', quiet=True)
nltk.download('wordnet’, quiet=True)

self.stop_words = set(stopwords.words('english'))

self.lemmatizer = WordNetLemmatizer()

def load_crew_reports(self, data_source):

Load crew report data from various sources (CSV, database, API)
try:
if isinstance(data_source, str) and data_source.endswith('.csv'):
self.crew_reports = pd.read_csv(data_source)
elif isinstance(data_source, pd.DataFrame):

self.crew_reports = data_source.copy()

Convert datetime columns
datetime_cols = ['submission_date', 'incident_date']
for col in datetime_cols:

if col in self.crew_reports.columns:

self.crew_reports[col] = pd.to_datetime(self.crew_reports[col])

print(f"Loaded {len(self.crew_reports)} crew reports successfully")
return True

except Exception as e:
print(f"Error loading crew reports: {str(e)}")

return False

def process_immediate_reports(self, new_reports):

Process new crew reports immediately for real-time analysis

immediate_alerts = []

for idx, report in new_reports.iterrows():
Immediate risk assessment

risk_level = self.assess_immediate_risk(report)

Critical alert detection
if risk_level =='CRITICAL":
alert ={
'report_id": report.get('report_id', idx),
‘crew_type': report['crew_type'l,
'risk_level': risk_level,
'safety_category': self.classify_safety_category(report['narrative'l),
'immediate_action_required': True,
‘alert_timestamp': datetime.now()
}

immediate_alerts.append(alert)

Update running trend metrics

self.update_realtime_metrics(report)

return immediate_alerts

def assess_immediate_risk(self, report):

Assess immediate risk level of crew report using multiple indicators

narrative = report['narrative'].lower()

crew_type = report['crew_type']

Critical keywords that indicate immediate risk
critical_keywords = [
'‘emergency’, 'fire', 'smoke', 'evacuation’, 'injury', 'medical’,

‘engine failure', 'system failure', 'unable’, 'mayday’, 'abort

high_risk_keywords = [
'malfunction’, 'warning', 'caution’, '‘abnormal’, 'deviation’,

'unstable’, 'unsafe’, 'concern’, 'issue'

Calculate risk score

risk_score =0

Check for critical keywords
for keyword in critical_keywords:
if keyword in narrative:

risk_score += 10

Check for high risk keywords
for keyword in high_risk_keywords:
if keyword in narrative:

risk_score +=5

Crew type specific risk assessment
if crew_type == "Flight Crew":
flight_critical = ['approach’, 'landing’, 'takeoff', 'altitude’, 'speed']
for keyword in flight_critical:
if keyword in narrative and any(crit in narrative for crit in critical_keywords):

risk_score += 15

Determine risk level

if risk_score >= 25:
return 'CRITICAL'

elif risk_score >=15:
return 'HIGH'

elif risk_score >=5:
return 'MEDIUM'

else:

return 'LOW'

def classify_safety category(self, narrative):

Automatically classify crew report safety category using NLP

narrative_lower = narrative.lower()

Clean and tokenize narrative
tokens = word_tokenize(narrative_lower)

tokens = [word for word in tokens if word.isalpha() and word not in self.stop_words]

tokens = [self.lemmatizer.lemmatize(word) for word in tokens]

Calculate category scores
category_scores = {}
for category, keywords in self.safety_categories.items():
score = sum(1 for keyword in keywords if keyword in tokens)

category_scores[category] = score

Return category with highest score
if max(category_scores.values()) > O:

return max(category_scores, key=category_scores.get)
else:

return 'Uncategorized'

def advanced_trend_analysis(self):

Perform comprehensive trend analysis on crew reports

if self.crew_reports is None:
print("No crew reports loaded")

return None

trends = {}

Temporal trend analysis

trends['temporal'] = self.analyze_temporal_trends()

Crew type specific trends

trends['crew_type'] = self.analyze_crew_type_trends()

Safety category trends

trends['safety_categories'] = self.analyze_safety_category_trends()

Narrative sentiment analysis

trends['sentiment'] = self.analyze_narrative_sentiment()

Clustering analysis for pattern detection

trends['clusters'] = self.perform_cluster_analysis()

Predictive trend modeling

trends['predictions'] = self.predict_future_trends()

return trends

def analyze_temporal_trends(self):

Analyze reporting patterns over time

df = self.crew_reports.copy()

Daily report volumes

daily_reports = df.groupby(df['submission_date'].dt.date).size()

Weekly patterns

df['day_of_week'] = df['submission_date'].dt.day_name()

weekly _pattern = df.groupby('day_of week').size()

Monthly trends
df['month_year'] = df['submission_date'].dt.to_period('M")

monthly_trends = df.groupby(‘'month_year').size()

Hourly patterns (if time available)

if 'submission_time' in df.columns:
df['hour'] = pd.to_datetime(df['submission_time']).dt.hour
hourly_pattern = df.groupby(‘hour').size()

else:

hourly_pattern = None

return {
'daily_volumes': daily_reports,
'weekly pattern': weekly_pattern,
'monthly_trends': monthly_trends,

'hourly_pattern': hourly_pattern

def analyze_crew_type_trends(self):

Analyze trends specific to different crew types

crew_trends = {}

for crew_type in self.crew_reports['crew_type'].unique():

crew_data = self.crew_reports[self.crew_reports['crew_type'] == crew_type]

Safety category distribution for this crew type
crew_data['safety_category'] = crew_data['narrative'].apply(
self.classify_safety_category

)

category_dist = crew_data['safety_category'].value_counts()

Temporal patterns for this crew type
temporal_pattern = crew_data.groupby(
crew_data['submission_date'].dt.date

).size()

crew_trends[crew_type] = {
'total_reports': len(crew_data),
‘category_distribution': category_dist,
'‘temporal_pattern': temporal_pattern,

‘avg_daily_reports': temporal_pattern.mean()

return crew_trends

def analyze_safety_category_trends(self):

Analyze trends across different safety categories

Classify all reports
self.crew_reports['safety_category'] = self.crew_reports[‘'narrative'].apply(

self.classify_safety_category

category_trends = {}

for category in self.crew_reports['safety_category'].unique():
category_data = self.crew_reports[

self.crew_reports['safety_category'] == category

Temporal trend for this category
temporal_trend = category_data.groupby(
category_data['submission_date'].dt.date

).size()

Crew type distribution for this category

crew_distribution = category_data['crew_type'].value_counts()

category_trends[category] = {
'total_reports': len(category_data),
'‘temporal_trend': temporal_trend,
‘crew_distribution': crew_distribution,

'trend_slope': self.calculate_trend_slope(temporal_trend)

return category_trends

def analyze_narrative_sentiment(self):

Analyze sentiment patterns in crew report narratives

sentiments =[]

for narrative in self.crew_reports['narrative'l:
blob = TextBlob(narrative)
sentiments.append({
'polarity': blob.sentiment.polarity,
'subjectivity': blob.sentiment.subjectivity

b

sentiment_df = pd.DataFrame(sentiments)

return {
‘avg_polarity': sentiment_df['polarity']l.mean(),
'avg_subjectivity': sentiment_df['subjectivity'].mean(),
'sentiment_distribution': sentiment_df['polarity'].describe(),

'sentiment_trends': sentiment_df

def perform_cluster_analysis(self):

Perform clustering analysis to identify hidden patterns

Vectorize narratives
vectorizer = TfidfVectorizer(max_features=100, stop_words="english')

narrative_vectors = vectorizer.fit_transform(self.crew_reports['narrative'])

Perform clustering
n_clusters = min(8, len(self.crew_reports) // 10) # Adaptive cluster number
kmeans = KMeans(n_clusters=n_clusters, random_state=42)

clusters = kmeans.fit_predict(narrative_vectors)

Analyze clusters
self.crew_reports['cluster'] = clusters

cluster_analysis = {}

for cluster_id in range(n_clusters):

cluster_reports = self.crew_reports[self.crew_reports['cluster'] == cluster_id]

Get most common words in cluster
cluster_narratives = ' '.join(cluster_reports['narrative'])

common_words = Counter(word_tokenize(cluster_narratives.lower()))

cluster_analysis[cluster_id] = {
'size': len(cluster_reports),
‘common_words': common_words.most_common(10),
‘crew_types': cluster_reports['crew_type'l.value_counts(),

'sample_narratives': cluster_reports['narrative'].head(3).tolist()

return cluster_analysis

def predict_future_trends(self):

Use machine learning to predict future reporting trends

Prepare time series data

daily_counts = self.crew_reports.groupby(
self.crew_reports['submission_date'].dt.date

).size()

Create features for prediction
X=]

y =]

foriin range(7, len(daily_counts)):
X.append(daily_counts.iloc[i-7:i].values) # Last 7 days

y.append(daily_counts.iloc[i]) # Next day

X = np.array(X)

y = np.array(y)

if len(X) > 10: # Ensure enough data for training
Split and train
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.2, random_state=42

Use Random Forest for prediction
rf = RandomForestClassifier(n_estimators=100, random_state=42)

rf.fit(X_train, y_train)

Predict next 7 days
last_week = daily_counts.tail(7).values.reshape(1, -1)

next_day_prediction = rf.predict(last_week)[0]

return {
'model_accuracy': rf.score(X_test, y_test),
'next_day_prediction': next_day_prediction,
'feature_importance': rf.feature_importances_
}
else:

return {'error': 'Insufficient data for prediction'}

def calculate_trend_slope(self, time_series):

Calculate trend slope for time series data

if len(time_series) < 2:

return 0

X = np.arange(len(time_series))

y = time_series.values

Calculate linear regression slope
slope = np.polyfit(x, y, 1)[0]

return slope

def update_realtime_metrics(self, report):

Update real-time metrics for immediate processing

current_date = datetime.now().date()

if current_date not in self.trend_metrics:
self.trend_metrics[current_date] = {
'total_reports': 0,
‘crew_type_counts': Counter(),
'safety_category_counts': Counter(),

'risk_level _counts': Counter()

Update metrics
self.trend_metrics[current_date]['total_reports'] += 1

self.trend_metrics[current_date]['crew_type_counts'][report['crew_type']] +=1

safety_category = self.classify_safety category(report['narrative'])

self.trend_metrics[current_date]['safety_category_counts'][safety_category] +=1

risk_level = self.assess_immediate_risk(report)

self.trend_metrics[current_date]['risk_level_counts'][risk_level] +=1

def generate_trend_alert(self, threshold_multiplier=2.0):

Generate alerts based on trend analysis
alerts =]

current_date = datetime.now().date()

if current_date in self.trend_metrics:

current_total = self.trend_metrics[current_date]['total_reports']

Calculate historical average
historical_dates = [date for date in self.trend_metrics.keys()

if date < current_date]

if len(historical_dates) > 7:
historical_avg = np.mean([
self.trend_metrics[date]['total_reports']

for date in historical_dates[-7:]

if current_total > historical_avg * threshold_multiplier:
alerts.append({
'type': 'VOLUME_SPIKE',

'message': f'Daily report volume ({current_total}) exceeds historical average by
{threshold_multiplier}x',

'severity': 'HIGH',

'timestamp': datetime.now()

)

return alerts

def export_analysis_results(self, output_path):

Export analysis results for Power Bl consumption

results = self.advanced_trend_analysis()

Create summary dataframes for Power Bl

export_data = {}

Daily trend data
if 'temporal' in results:
daily_df = pd.DataFrame({
'date': results['temporal']['daily_volumes'].index,
'report_count': results['temporal']['daily_volumes'].values

b

export_data['daily_trends'] = daily_df

Crew type analysis
if 'crew_type' in results:
crew_summary =[]
for crew_type, data in results['crew_type'l.items():

crew_summary.append({

‘crew_type': crew_type,

'total_reports': data['total_reports'],

‘avg_daily_reports': data['avg_daily_reports']
1

export_data['crew_type_summary'] = pd.DataFrame(crew_summary)

Safety category trends
if 'safety_categories' in results:
category_summary = []
for category, data in results['safety_categories'].items():
category_summary.append({
'safety_category': category,
'total_reports': data['total_reports'],
'trend_slope': data['trend_slope']
1

export_data['category_summary'] = pd.DataFrame(category_summary)

Export to Excel for Power Bl
with pd.ExcelWriter(output_path, engine='openpyxl') as writer:
for sheet_name, df in export_data.items():

df.to_excel(writer, sheet_name=sheet_name, index=False)

print(f"Analysis results exported to {output_path}")

Example usage and real-time processing simulation

if _name__=="_main__":

Initialize analyzer

analyzer = CrewReportAnalyzer()

Simulate loading crew reports

print("Crew Report Analysis System Initialized")
print("Capabilities:")

print("1. Immediate report processing and risk assessment")
print("2. Multi-dimensional trend analysis")

print("3. Natural language processing for narratives")
print("4. Machine learning pattern detection")

print("5. Real-time alerting system")

print("6. Predictive trend modeling")

3.3 Real-Time Processing Architecture
The Python system enables real-time processing of crew reports through event-driven architecture:

Streaming Data Processing: The system can connect to live data streams from crew reporting systems,
processing reports as they are submitted 22 23.

Immediate Risk Assessment: Each report undergoes immediate risk assessment using natural
language processing and pattern matching algorithms 10.

Automated Alert Generation: High-risk reports trigger immediate alerts to safety personnel through
multiple communication channels 11.

Continuous Trend Monitoring: The system continuously updates trend metrics and identifies emerging
patterns in real-time 4.

Chapter 4: Power Bl for Executive Safety Dashboards
4.1 Power Bl's Role in Crew Report Analytics

Power Bl serves as the visualization and decision support layer of the crew reporting system,
transforming complex analytical outputs into intuitive, actionable dashboards for aviation safety
professionals. For crew report analytics, Power Bl's strength lies in combining real-time operational
data with historical trend analysis and predictive insights in unified interfaces that support immediate
decision-making 24 25.

Real-Time Safety Monitoring: Power Bl dashboards provide continuous monitoring of crew report
submission rates, safety category distributions, and emerging risk indicators 25 26.

Executive Decision Support: High-level dashboards summarize key safety performance indicators,
trend analysis, and predictive insights in formats appropriate for senior safety management and
executive leadership 24.

Operational Intelligence: Detailed analytical views support safety analysts and investigators with
comprehensive data exploration capabilities and drill-down functionality 25.

4.2 Advanced DAX Formulas for Crew Report Analytics

Power Bl's Data Analysis Expressions (DAX) language enables sophisticated calculations specifically
designed for crew report analysis:

-- Power Bl DAX Measures for Crew Report Analytics
-- 1. Real-time report processing rate
Report_Processing_Rate =
VAR TotalReportsToday =
COUNTROWS(
FILTER(
'CrewReports',

'CrewReports'[SubmissionDate] = TODAY()

)

VAR ProcessedReportsToday =
COUNTROWS(
FILTER(

'CrewReports’,

'‘CrewReports'[SubmissionDate] = TODAY() &&

'CrewReports'[ProcessingStatus] = "Processed"

)

RETURN
IF(
TotalReportsToday > 0,
DIVIDE(ProcessedReportsToday, TotalReportsToday) * 100,

BLANK()

-- 2. Crew report trend analysis
Report_Trend_Direction =
VAR CurrentPeriodCount =
COUNTROWS(
FILTER(
'CrewReports’,
'CrewReports'[SubmissionDate] >= TODAY() - 7 &&

'CrewReports'[SubmissionDate] <= TODAY()

)

VAR PreviousPeriodCount =
COUNTROWS(
FILTER(
'CrewReports',
'CrewReports'[SubmissionDate] >= TODAY() - 14 &&

'CrewReports'[SubmissionDate] <= TODAY() - 7

)

VAR TrendPercentage =
IF(
PreviousPeriodCount > 0,
(CurrentPeriodCount - PreviousPeriodCount) / PreviousPeriodCount * 100,
BLANK()
)
RETURN
SWITCH(
TRUE(),
TrendPercentage > 10, "Increasing Trend",
TrendPercentage < -10, "Decreasing Trend",

"Stable"

-- 3. Critical report identification
Critical_Reports_Count =
COUNTROWS(
FILTER(
'CrewReports’,
'CrewReports'[RiskLevel] = "CRITICAL" &&

'‘CrewReports'[SubmissionDate] >= TODAY() - 30

-- 4. Crew type reporting patterns

Crew_Type_Distribution =
VAR FlightCrewReports =
COUNTROWS(
FILTER(
'CrewReports',
'CrewReports'[CrewType] = "Flight Crew" &&

'CrewReports'[SubmissionDate] >= TODAY() - 30

)

VAR CabinCrewReports =
COUNTROWS(
FILTER(
'CrewReports’,
'‘CrewReports'[CrewType] = "Cabin Crew" &&

'CrewReports'[SubmissionDate] >= TODAY() - 30

)
RETURN

"Flight Crew: " & FlightCrewReports & " | Cabin Crew: " & CabinCrewReports

-- 5. Safety category trend analysis
Safety Category_Trend =
VAR SelectedCategory = SELECTEDVALUE('CrewReports'[SafetyCategory])
VAR Current30Days =
COUNTROWS(
FILTER(

'CrewReports',

'CrewReports'[SafetyCategory] = SelectedCategory &&

'CrewReports'[SubmissionDate] >= TODAY() - 30

)

VAR Previous30Days =
COUNTROWS(
FILTER(
'CrewReports’,
'CrewReports'[SafetyCategory] = SelectedCategory &&
'CrewReports'[SubmissionDate] >= TODAY() - 60 &&

'CrewReports'[SubmissionDate] < TODAY() - 30

)

RETURN
IF(
Previous30Days > 0,
(Current30Days - Previous30Days) / Previous30Days * 100,

BLANK()

-- 6. Average processing time
Average_Processing_Time =
VAR ProcessedReports =
FILTER(
'CrewReports’,
'‘CrewReports'[ProcessingStatus] = "Processed" &&

NOT ISBLANK('CrewReports'[ProcessingTime])

)

RETURN

AVERAGE(ProcessedReports[ProcessingTime])

-- 7. Immediate action required indicator
Immediate_Action_Required =
VAR ImmediateActionReports =
COUNTROWS(
FILTER(
'CrewReports’,
'CrewReports'[ImmediateActionRequired] = TRUE &&

'CrewReports'[SubmissionDate] = TODAY()

)

RETURN
IF(

ImmediateActionReports > 0,

"1 " & ImmediateActionReports & " reports require immediate action",

No immediate actions required"

-- 8. Narrative sentiment analysis
Average_Report_Sentiment =

AVERAGE('CrewReports'[SentimentPolarity])

-- 9. Predictive risk score

Predictive_Risk_Score =

VAR RecentTrendSlope = [Safety_Category_Trend]
VAR CriticalReportsRatio =
DIVIDE(
[Critical_Reports_Count],
COUNTROWS(
FILTER(
'CrewReports’,

'CrewReports'[SubmissionDate] >= TODAY() - 30

)
) * 100
RETURN
SWITCH(
TRUE(),
RecentTrendSlope > 20 && CriticalReportsRatio > 5, "HIGH RISK",
RecentTrendSlope > 10 | | CriticalReportsRatio > 2, "MEDIUM RISK",

"LOW RISK"

-- 10. Real-time dashboard refresh indicator
Last_Update_Status =
VAR LastUpdate = MAX('CrewReports'[LastRefreshTime])
VAR MinutesAgo = DATEDIFF(LastUpdate, NOW(), MINUTE)
RETURN
IF(

MinutesAgo <=5,

Live (" & MinutesAgo & "min ago)",

IF(
MinutesAgo <= 15,

Recent (" & MinutesAgo & "min ago)",

" @ Stale (" & MinutesAgo & "min ago)"

4.3 Real-Time Dashboard Architecture

Power Bl's real-time capabilities enable continuous monitoring of crew report analytics through
several mechanisms:

Live Data Connections: Direct connection to crew reporting databases and Python analytical outputs
ensures dashboards reflect current operational status 25.

Automated Refresh Scheduling: Configurable refresh schedules ensure dashboards update
continuously without manual intervention 27.

Real-Time Streaming: Power Bl streaming datasets enable immediate visualization of new crew
reports and analytical insights as they are generated 25.

Mobile Accessibility: Power Bl mobile applications provide access to critical crew report analytics from
any location, enabling immediate response to safety concerns 24.

4.4 Executive Safety Dashboard Design

Power Bl enables creation of role-specific dashboards tailored to different stakeholders in the crew
reporting process:

Safety Manager Dashboard Features:
e Real-time report submission monitoring
¢ Immediate risk assessment alerts
e Trend analysis with statistical significance
e Crew type performance comparison
e Safety category distribution analysis

e Processing time performance metrics

Executive Leadership Dashboard Features:
e High-level safety performance indicators
e Strategic trend analysis and predictions
e Regulatory compliance status
e Cost-benefit analysis of safety interventions
e Cross-operational safety comparisons
Safety Analyst Dashboard Features:
e Detailed narrative analysis tools
e Advanced pattern recognition results
e Predictive modeling outputs
e Cluster analysis visualizations

e Statistical process control charts

Chapter 5: Integration and Real-Time Processing Architecture
5.1 System Integration Strategy

The successful implementation of a real-time crew report analysis system requires seamless
integration between Excel's data validation capabilities, Python's advanced analytics, and Power Bl's
visualization platform. This integration must support both immediate report processing and
continuous trend analysis without compromising data integrity or analytical accuracy 12 13.

Data Flow Architecture: The system follows a continuous data flow model where crew reports enter
through Excel validation processes, undergo immediate Python-based risk assessment, and display
results through Power Bl dashboards within minutes of submission 21 9.

Real-Time Processing Pipeline: The architecture supports parallel processing streams - immediate
alerts for critical reports and comprehensive trend analysis for all reports - ensuring both urgent
safety needs and long-term analytical requirements are met simultaneously 10.

Quality Assurance Integration: Each processing stage includes automated quality checks to ensure
data integrity, analytical accuracy, and dashboard reliability throughout the real-time processing
pipelinell.

5.2 Immediate Processing Implementation

The system's immediate processing capabilities address the critical aviation safety requirement for
rapid response to crew-reported safety concerns:

Real-time crew report processing system
import asyncio

from datetime import datetime

import json

from typing import Dict, List, Optional

import logging

class RealTimeCrewReportProcessor:
def __init__(self):
self.alert_queue = asyncio.Queue()
self.processing_metrics = {
'reports_processed': 0,

‘alerts_generated': O,

'processing_times': [],
'system_status': 'ACTIVE'

}

self.setup_logging()

def setup_logging(self):
"""Setup logging for real-time processing monitoring"""
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s’,
handlers=[

logging.FileHandler('crew_report_processing.log'),

logging.StreamHandler()

)

self.logger = logging.getLogger(__name_)

async def process_incoming_report(self, report_data: Dict) -> Dict:

Process incoming crew report immediately

start_time = datetime.now()

try:

Validate report data

validation_result = await self.validate_report_data(report_data)

if not validation_result['valid']:

return {
'status': "VALIDATION_FAILED',
‘errors': validation_result['errors'],

'processing_time': (datetime.now() - start_time).total_seconds()

Immediate risk assessment

risk_assessment = await self.assess_immediate_risk(report_data)

Generate alerts if necessary
if risk_assessment['risk_level'] in ['CRITICAL', 'HIGH']:

await self.generate_immediate_alert(report_data, risk_assessment)

Update real-time metrics

await self.update_realtime_metrics(report_data, risk_assessment)

Store processed report

await self.store_processed_report(report_data, risk_assessment)

processing_time = (datetime.now() - start_time).total_seconds()
self.processing_metrics['processing_times'].append(processing_time)

self.processing_metrics['reports_processed'] += 1

self.logger.info(f"Report {report_data.get('report_id', 'UNKNOWN')} processed in
{processing_time:.2f} seconds")

return {

'status': 'SUCCESS',

'risk_level': risk_assessment['risk_level'],
'processing_time': processing_time,

‘alerts_generated': risk_assessment.get('alert_generated’, False)

except Exception as e:
self.logger.error(f"Error processing report: {str(e)}")
return {
'status': 'ERROR,
'error_message': str(e),

'processing_time': (datetime.now() - start_time).total_seconds()

async def validate_report_data(self, report_data: Dict) -> Dict:

Validate incoming crew report data

errors = []

required_fields = ['crew_type', 'narrative’, 'incident_date', 'submission_date']

Check required fields
for field in required_fields:
if field not in report_data or not report_data[field]:

errors.append(f"Missing required field: {field}")

Validate crew type

if report_data.get('crew_type') not in ['Flight Crew', 'Cabin Crew']:

errors.append("Invalid crew type")

Validate narrative length
if len(report_data.get('narrative’, ")) < 20:

errors.append("Narrative too short - minimum 20 characters required")

Validate dates
try:
incident_date = datetime.fromisoformat(report_data.get('incident_date', "))

submission_date = datetime.fromisoformat(report_data.get('submission_date', "))

if incident_date > submission_date:
errors.append("Incident date cannot be after submission date")
except (ValueError, TypeError):

errors.append("Invalid date format")

return {
'valid": len(errors) == 0,

'errors': errors

async def assess_immediate_risk(self, report_data: Dict) -> Dict:

Assess immediate risk level using multiple algorithms

narrative = report_data['narrative'].lower()

crew_type = report_data['crew_type'l

Initialize risk factors

risk_factors = {
‘critical_keywords': O,
'high_risk_keywords': O,
‘crew_specific_risk': O,

‘temporal_risk': 0

Critical keyword analysis
critical_keywords = [
'emergency’, 'fire', 'smoke', 'evacuation’, 'injury', 'medical emergency’,

‘engine failure', 'system failure', 'unable’, 'mayday’, '‘pan pan'

for keyword in critical_keywords:
if keyword in narrative:

risk_factors['critical_keywords'] += 1

High risk keyword analysis
high_risk_keywords = [
'malfunction’, 'warning', 'caution’, '‘abnormal’, 'deviation’,

'unstable’, 'unsafe’, 'concern’, 'issue’, 'problem’

for keyword in high_risk_keywords:

if keyword in narrative:

risk_factors['high_risk_keywords'] +=1

Crew-specific risk assessment
if crew_type == "Flight Crew":
flight_risk_keywords = ['approach’, 'landing', 'takeoff', ‘altitude']
for keyword in flight_risk_keywords:
if keyword in narrative and any(crit in narrative for crit in critical_keywords):
risk_factors['crew_specific_risk'] += 2
elif crew_type == 'Cabin Crew":
cabin_risk_keywords = ['passenger’, 'turbulence’, 'service']
for keyword in cabin_risk_keywords:
if keyword in narrative and any(crit in narrative for crit in critical_keywords):

risk_factors['crew_specific_risk'] += 2

Calculate overall risk score

risk_score = (
risk_factors['critical_keywords'] * 10 +
risk_factors['high_risk_keywords'] * 5 +
risk_factors['crew_specific_risk'] * 3 +

risk_factors['temporal_risk'] * 2

Determine risk level

if risk_score >= 30:
risk_level = 'CRITICAL'

elif risk_score >= 20:

risk_level = 'HIGH'

elif risk_score >=10:
risk_level = 'MEDIUM'
else:

risk_level = 'LOW'

return {
'risk_level': risk_level,
'risk_score': risk_score,
'risk_factors': risk_factors,

'assessment_timestamp': datetime.now()

async def generate_immediate_alert(self, report_data: Dict, risk_assessment: Dict):

Generate immediate alert for high-risk reports
alert = {
‘alert_id": f"ALERT {datetime.now().strftime('%Y%m%d_%H%M%S')}",
‘report_id': report_data.get('report_id'),
‘crew_type': report_data['crew_type'l,
'risk_level': risk_assessment['risk_level'],
'risk_score': risk_assessment['risk_score'],
'narrative_preview': report_data['narrative'][:200] + "...",
‘alert_timestamp': datetime.now(),

‘alert_type': 'IMMEDIATE_SAFETY_CONCERN'

Add to alert queue for notification system
await self.alert_queue.put(alert)

self.processing_metrics['alerts_generated'] +=1

Log critical alert
if risk_assessment['risk_level'] == 'CRITICAL":

self.logger.critical(f"CRITICAL ALERT: {alert['alert_id']} - {report_data.get('crew_type')} report")

return alert

async def update_realtime_metrics(self, report_data: Dict, risk_assessment: Dict):

Update real-time processing metrics

current_hour = datetime.now().replace(minute=0, second=0, microsecond=0)

Update hourly metrics (could be stored in database/cache)
hourly_metrics = {

'timestamp': current_hour,

'total_reports': 1,

‘crew_type': report_data['crew_type'l,

'risk_level': risk_assessment['risk_level'],

'processing_timestamp': datetime.now()

This would typically update a real-time database or cache

self.logger.info(f"Updated real-time metrics: {hourly_metrics}")

async def store_processed_report(self, report_data: Dict, risk_assessment: Dict):

Store processed report with analysis results
processed_report = {
**report_data,
'risk_assessment': risk_assessment,
'processing_timestamp': datetime.now(),

'processing_status': 'COMPLETED'

Store in database (implementation would vary based on database choice)

self.logger.info(f"Stored processed report: {report_data.get('report_id')}")

async def get_processing_metrics(self) -> Dict:

Get current processing performance metrics
if self.processing_metrics['processing_times']:

avg_processing_time = sum(self.processing_metrics['processing_times']) /
len(self.processing_metrics['processing_times'])

max_processing_time = max(self.processing_metrics['processing_times'])
else:
avg_processing_time =0

max_processing_time =0

return {

'total_reports_processed': self.processing_metrics['reports_processed'],
'total_alerts_generated': self.processing_metrics['alerts_generated'],
'average_processing_time': avg_processing_time,
'max_processing_time': max_processing_time,

'system_status': self.processing_metrics['system_status'],

‘current_timestamp': datetime.now()

Alert notification system
class AlertNotificationSystem:
def _init_ (self, processor: RealTimeCrewReportProcessor):
self.processor = processor
self.notification_channels = {
'CRITICAL": ['email’, 'sms', 'dashboard'],
'HIGH": ['email', 'dashboard'],

'MEDIUM': ['dashboard']

async def start_alert_monitoring(self):

Start monitoring alert queue and sending notifications
while True:
try:
Wait for alerts from the queue

alert = await self.processor.alert_queue.get()

Send notifications based on risk level

await self.send_notifications(alert)

Mark alert as processed

self.processor.alert_queue.task_done()

except Exception as e:
logging.error(f"Error in alert monitoring: {str(e)}")

await asyncio.sleep(1) # Brief pause before retry

async def send_notifications(self, alert: Dict):

Send notifications through configured channels
risk_level = alert['risk_level']

channels = self.notification_channels.get(risk_level, ['dashboard'])

for channel in channels:
if channel == 'email":
await self.send_email_notification(alert)
elif channel =='sms":
await self.send_sms_notification(alert)
elif channel == 'dashboard":

await self.update_dashboard_alert(alert)

async def send_email_notification(self, alert: Dict):

"""Send email notification for safety alert

Email implementation would go here

logging.info(f"Email notification sent for alert {alert['alert_id']}")

async def send_sms_notification(self, alert: Dict):
"""Send SMS notification for critical safety alert"""
SMS implementation would go here

logging.info(f"SMS notification sent for alert {alert['alert_id']}")

async def update_dashboard_alert(self, alert: Dict):
"""Update Power Bl dashboard with new alert"""

Dashboard update implementation would go here

logging.info(f"Dashboard updated with alert {alert['alert_id']}")

Main application runner
async def main():

Main application entry point for real-time processing

Initialize processor

processor = RealTimeCrewReportProcessor()

Initialize alert system

alert_system = AlertNotificationSystem(processor)

Start alert monitoring

alert_task = asyncio.create_task(alert_system.start_alert_monitoring())

Example of processing incoming reports
sample_reports = [
{
‘report_id": 'CR_001",
‘crew_type': 'Flight Crew',

'narrative': 'Engine fire warning light illuminated during approach. Executed emergency
checklist and declared mayday.',

'incident_date': '2025-07-20T14:30:00',

'submission_date': '2025-07-20T15:00:00'

'report_id': 'CR_002',
'crew_type': 'Cabin Crew',

'narrative': 'Passenger became ill during flight. Provided first aid and requested medical
assistance.',

'incident_date": '2025-07-20T12:15:00',

'submission_date': '2025-07-20T13:00:00"

Process sample reports
for report in sample_reports:
result = await processor.process_incoming_report(report)

print(f"Processed {report['report_id'l}: {result}")

Get processing metrics
metrics = await processor.get_processing_metrics()

print(f"Processing metrics: {metrics}")

Keep alert monitoring running
await alert_task
if _name__=="_main__":

asyncio.run(main())

5.3 Trend Identification System Architecture

The trend identification system operates continuously alongside immediate processing, providing
comprehensive analytical insights:

Multi-Dimensional Trend Analysis: The system analyses trends across crew type, safety category,
temporal patterns, and operational factors simultaneously 4 14.

Predictive Trend Modelling: Machine learning algorithms identify emerging patterns before they
become fully established trends 15 28.

Statistical Significance Testing: All identified trends undergo statistical validation to ensure analytical
reliability 14.

Automated Trend Alerting: The system automatically alerts safety managers when significant trends
are detected 4.

Chapter 6: Implementation Strategy and Best Practices
6.1 Phased Implementation Approach

The implementation of a comprehensive crew reporting analytics system requires careful planning to
ensure minimal disruption to existing safety operations while maximizing the value of new analytical
capabilities. The recommended implementation follows a four-phase methodology specifically
designed for aviation safety environments 13.

Phase 1: Foundation and Excel Implementation (Months 1-2)
e Establish Excel-based data validation and processing workflows
¢ Implement automated crew report categorization systems
e Create basic trend analysis capabilities using Excel functions
e Train safety staff on enhanced Excel analytical features
e Establish data quality standards and validation procedures
Phase 2: Python Analytics Integration (Months 3-4)
e Deploy Python-based natural language processing capabilities
e Implement machine learning algorithms for pattern recognition
e Establish real-time risk assessment algorithms
e Create automated alert generation systems
e Integrate Python outputs with Excel workflows
Phase 3: Power Bl Dashboard Deployment (Months 5-6)
e Develop role-specific safety dashboards for different user groups
¢ Implement real-time data connections and streaming capabilities
e Create executive reporting and trend visualization interfaces
e Deploy mobile access capabilities for critical safety information
e Establish automated dashboard refresh and notification systems
Phase 4: Advanced Analytics and Optimization (Months 7-8)
e Deploy predictive analytics capabilities for trend forecasting
¢ Implement advanced clustering and pattern recognition algorithms
e Optimize system performance for high-volume report processing

e Establish continuous improvement processes and feedback mechanisms

6.2 Change Management for Safety Organizations

Aviation safety organizations require specialized change management approaches that account for
regulatory requirements, safety culture considerations, and operational continuity needs 29 13.

Safety Culture Integration: The new analytical capabilities must enhance, not replace, existing safety
reporting culture. Training programs should emphasize how enhanced analytics support safety
professionals rather than automate their decision-making 29.

Regulatory Compliance Assurance: Implementation must maintain compliance with existing safety
management system requirements while adding analytical value. Documentation and audit trails must
demonstrate that enhanced analytics support regulatory obligations 13.

Operational Continuity: The system must operate alongside existing reporting processes during
implementation, ensuring no disruption to critical safety functions 11.

6.3 Training and Capability Development

Effective training programs ensure safety professionals can leverage the full analytical capabilities of
the integrated system:

Role-Specific Training Tracks:

o Safety Managers: Focus on trend interpretation, risk assessment validation, and strategic
decision support

o Safety Analysts: Emphasis on advanced analytical features, pattern recognition, and
investigative capabilities

e Executive Leadership: High-level dashboard interpretation and strategic planning applications

e Crew Members: Understanding of enhanced feedback mechanisms and reporting
improvements

Hands-On Learning Approach: Training programs should use real crew report data and scenarios to
demonstrate analytical capabilities and build confidence in new tools 29.

Continuous Learning Support: Establish ongoing support mechanisms including user guides, video
tutorials, and expert consultation resources 3.

6.4 Quality Assurance and Validation
Robust quality assurance processes ensure analytical accuracy and reliability:

Data Quality Monitoring: Automated systems continuously monitor data quality, identifying
inconsistencies, missing information, and processing errors 11.

Analytical Validation: Statistical validation processes confirm the accuracy of trend identification, risk
assessment, and predictive modelling capabilities 14.

User Acceptance Testing: Comprehensive testing by safety professionals validates that analytical
outputs meet operational requirements and enhance decision-making 11.

Continuous Performance Monitoring: Ongoing monitoring of system performance, user satisfaction,
and analytical accuracy ensures sustained value delivery 4.

Chapter 7: Advanced Applications and Future Enhancements
7.1 Artificial Intelligence Integration

The evolution of crew reporting analytics increasingly incorporates advanced Al capabilities that
extend beyond traditional analytical approaches. These enhancements enable more sophisticated
understanding of crew reports and predictive identification of safety trends 10 30.

Natural Language Understanding: Advanced Al models can analyse crew report narratives with
human-level comprehension, identifying subtle safety implications that traditional keyword-based
systems miss 19 31.

Automated Report Classification: Machine learning models can automatically classify crew reports
across multiple dimensions simultaneously - safety category, urgency level, required actions, and
regulatory implications 31 10.

Predictive Safety Analytics: Al systems can identify early warning indicators of potential safety issues
by analysing patterns across multiple data sources and time periods 15 28.

7.2 Advanced Natural Language Processing Implementation

The following implementation demonstrates sophisticated NLP capabilities for crew report analysis:

import torch

from transformers import AutoTokenizer, AutoModel, pipeline
from sentence_transformers import SentenceTransformer
import numpy as np

from sklearn.metrics.pairwise import cosine_similarity
import spacy

from collections import defaultdict

import networkx as nx

class AdvancedCrewReportNLP:
def __init__(self):
Initialize transformer models for aviation-specific analysis
self.tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')

self.bert_model = AutoModel.from_pretrained('bert-base-uncased')

Sentence transformer for semantic similarity

self.sentence_model = SentenceTransformer('all-MiniLM-L6-v2')

Sentiment analysis pipeline

self.sentiment_analyzer = pipeline('sentiment-analysis')

Named entity recognition

self.nlp = spacy.load('en_core_web_sm’)

Aviation-specific terminology database
self.aviation_terms = {
‘aircraft_systems': {
‘engines': ['engine’, 'turbine’, ‘compressor', ‘combustor’, 'fan'],
‘electrical': ['electrical’, 'generator’, 'battery’, 'power’, 'voltage'l,
'hydraulic': [*hydraulic', 'pressure’, 'pump’, ‘actuator’, 'fluid'],
'flight_controls': ['elevator’, 'aileron’, 'rudder’, 'trim’, 'autopilot']
}
'flight_phases': {
‘ground': ['taxi', 'gate’, 'ramp’, 'ground', 'pushback’],
'takeoff": ['takeoff', 'departure’, 'climb’, 'initial'],
‘cruise': ['cruise’, 'level', ‘altitude’, 'enroute'],
‘approach': ['approach’, 'descent’, 'final’, 'landing']
}
'urgency_indicators': {
‘critical': ['emergency’, 'mayday’, 'fire', 'smoke’, 'evacuation'],
'high': ['warning', 'caution’, 'abnormal’, 'malfunction’, 'failure'],

'medium’: ['concern’, 'issue’, 'problem’, 'unusual’, 'deviation']

def comprehensive_narrative_analysis(self, narrative: str) -> dict:

Perform comprehensive analysis of crew report narrative

i

analysis = {
'semantic_features': self.extract_semantic_features(narrative),
‘aviation_concepts': self.identify_aviation_concepts(narrative),
'urgency_assessment': self.assess_narrative_urgency(narrative),
'entity_extraction': self.extract_aviation_entities(narrative),
'sentiment_analysis': self.analyze_narrative_sentiment(narrative),
‘complexity_metrics': self.calculate_narrative_complexity(narrative),

'safety_implications': self.identify_safety_implications(narrative)

return analysis

def extract_semantic_features(self, narrative: str) -> dict:

Extract semantic features using transformer models

Generate sentence embeddings

embedding = self.sentence_model.encode([narrative])

Extract BERT features

inputs = self.tokenizer(narrative, return_tensors='pt', padding=True, truncation=True)
with torch.no_grad():
outputs = self.bert_model(**inputs)

bert_features = outputs.last_hidden_state.mean(dim=1).numpy()

return {
'sentence_embedding': embedding[0],
'bert_features': bert_features[0],

‘embedding_dimension': len(embedding[0])

def identify_aviation_concepts(self, narrative: str) -> dict:

Identify aviation-specific concepts in narrative

narrative_lower = narrative.lower()

concept_matches = defaultdict(list)

for category, subcategories in self.aviation_terms.items():
for subcategory, terms in subcategories.items():
matches = [term for term in terms if term in narrative_lower]

if matches:

concept_matches[category].extend([(subcategory, term) for term in matches])

return dict(concept_matches)

def assess_narrative_urgency(self, narrative: str) -> dict:

Assess urgency level based on linguistic indicators
nman
narrative_lower = narrative.lower()

urgency_scores = {}

for urgency_level, indicators in self.aviation_terms['urgency_indicators'].items():
score = sum(1 for indicator in indicators if indicator in narrative_lower)

urgency_scores[urgency_level] = score

Calculate overall urgency

total_score = sum(urgency_scores.values())

if urgency_scores.get('critical’, 0) > 0:
overall_urgency = 'CRITICAL'

elif urgency_scores.get('high', 0) > 0:
overall_urgency = 'HIGH'

elif urgency_scores.get('medium’, 0) > 0:
overall_urgency = 'MEDIUM'

else:

overall_urgency = 'LOW'

return {
'urgency_scores': urgency_scores,
‘overall_urgency': overall_urgency,

'urgency_confidence': max(urgency_scores.values()) / max(total_score, 1)

def extract_aviation_entities(self, narrative: str) -> dict:

Extract aviation-specific entities using NER

doc = self.nlp(narrative)

entities = {
'airports': [],
'aircraft_types': [],
'flight_numbers'": [],
‘times": [],
‘altitudes": [],

'speeds': []

Extract standard entities
for ent in doc.ents:
if ent.label_=="'GPE": # Geopolitical entity (could be airport)
entities['airports'].append(ent.text)
elif ent.label_ == 'TIME":

entities['times'].append(ent.text)

Extract aviation-specific patterns

import re

Flight numbers (e.g., AA1234, United 567)

flight_pattern = r'\b([A-Z]{2}[0-9]{1,4} | [A-Z][a-z]+\s[0-9]{1,4})\b'

flight_matches = re.findall(flight_pattern, narrative)

entities['flight_numbers'].extend(flight_matches)

Altitudes (e.g., FL350, 10,000 feet)
altitude_pattern = r'\b(FL[0-9]{3}| [0-9,]+\s*(?:feet| ft))\b'
altitude_matches = re.findall(altitude_pattern, narrative)

entities['altitudes'].extend(altitude_matches)

Speeds (e.g., 250 knots, Mach 0.8)
speed_pattern = r'\b([0-9]+\s*(?:knots| kts| mph) | Mach\s[0-9.]+)\b'
speed_matches = re.findall(speed_pattern, narrative)

entities['speeds'].extend(speed_matches)

return entities

def analyze_narrative_sentiment(self, narrative: str) -> dict:

Analyze sentiment with aviation safety context

Standard sentiment analysis

sentiment_result = self.sentiment_analyzer(narrative)[0]

Aviation-specific sentiment indicators

positive_safety_terms = ['resolved’, 'corrected’, 'successful’, 'normal’, 'safe']

negative_safety_terms = ['failed’, 'malfunction’, 'emergency’, 'unsafe’, ‘critical']

narrative_lower = narrative.lower()

positive_count = sum(1 for term in positive_safety_terms if term in narrative_lower)

negative_count = sum(1 for term in negative_safety_terms if term in narrative_lower)

return {
'standard_sentiment': sentiment_result,
'safety_sentiment_score': positive_count - negative_count,
'positive_indicators': positive_count,

'negative_indicators': negative_count

def calculate_narrative_complexity(self, narrative: str) -> dict:

Calculate linguistic complexity metrics

doc = self.nlp(narrative)

Basic metrics
word_count = len([token for token in doc if token.is_alphal])
sentence_count = len(list(doc.sents))

avg_sentence_length = word_count / max(sentence_count, 1)

Advanced metrics
unique_words = len(set([token.text.lower() for token in doc if token.is_alpha]))

lexical_diversity = unique_words / max(word_count, 1)

Technical term density

technical_terms =0

for category in self.aviation_terms.values():
for subcategory in category.values():

technical_terms += sum(1 for term in subcategory if term in narrative.lower())

technical_density = technical_terms / max(word_count, 1)

return {
‘word_count': word_count,
'sentence_count': sentence_count,
‘avg_sentence_length': avg_sentence_length,
'lexical_diversity': lexical_diversity,

'technical_density': technical_density

def identify_safety_implications(self, narrative: str) -> dict:

Identify potential safety implications
implications = {
'immediate_risk': False,
'investigation_required': False,
'system_monitoring_needed': False,
'training_implications': False,

'regulatory_reporting_required': False

narrative_lower = narrative.lower()

Immediate risk indicators
immediate_risk_terms = ['fire’, 'smoke’, 'emergency’, 'evacuation’, 'injury']
if any(term in narrative_lower for term in immediate_risk_terms):

implications['immediate_risk'] = True

Investigation triggers
investigation_terms = ['malfunction’, 'failure’, 'abnormal’, 'unsafe’, 'deviation']
if any(term in narrative_lower for term in investigation_terms):

implications['investigation_required'] = True

System monitoring needs
monitoring_terms = ['recurring’, 'repeated’, 'pattern’, 'trend']
if any(term in narrative_lower for term in monitoring_terms):

implications['system_monitoring_needed'] = True

Training implications
training_terms = ['procedure’, 'checklist’, 'training', 'knowledge', 'confusion']
if any(term in narrative_lower for term in training_terms):

implications['training_implications'] = True

Regulatory reporting
regulatory_terms = ['incident', 'accident’, 'violation', 'regulatory’, 'faa']
if any(term in narrative_lower for term in regulatory_terms):

implications['regulatory_reporting_required'] = True

return implications

def compare_report_similarity(self, narrativel: str, narrative2: str) -> float:

Calculate semantic similarity between two reports
embeddings = self.sentence_model.encode([narrativel, narrative2])
similarity = cosine_similarity([embeddings[0]], [embeddings[1]])[0][0]

return float(similarity)

def cluster_similar_reports(self, narratives: list) -> dict:

Cluster similar reports for pattern identification

embeddings = self.sentence_model.encode(narratives)

Calculate similarity matrix

similarity_matrix = cosine_similarity(embeddings)

Create similarity graph
G = nx.Graph()
for i in range(len(narratives)):
for j in range(i+1, len(narratives)):
if similarity_matrix[i][j] > 0.7: # Similarity threshold

G.add_edge(i, j, weight=similarity_matrix[i][j])

Find connected components (clusters)

clusters = list(nx.connected_components(G))

return {
‘clusters': [list(cluster) for cluster in clusters],
'similarity_matrix': similarity_matrix,

'num_clusters': len(clusters)

Example usage

def demonstrate_advanced_nlp():
nlp_analyzer = AdvancedCrewReportNLP()
sample_narrative = """

During approach to runway 24L at PFO, we experienced an engine fire warning

on engine #2 at approximately 3000 feet. Executed emergency checklist immediately,
declared mayday with ATC, and requested immediate vectors for landing.

Fire warning extinguished after engine shutdown. Landed safely with emergency

vehicles standing by. All passengers and crew evacuated normally via mobile steps.

analysis = nlp_analyzer.comprehensive_narrative_analysis(sample_narrative)

print("Advanced NLP Analysis Results:")

print(f"Aviation Concepts: {analysis['aviation_concepts']}")
print(f"Urgency Assessment: {analysis['urgency_assessment']}")
print(f"Safety Implications: {analysis['safety_implications']}")

print(f"Complexity Metrics: {analysis['complexity _metrics']}")

if _name__=="_main__":

demonstrate_advanced_nlp()

7.3 Predictive Safety Analytics

Advanced predictive capabilities enable aviation safety professionals to identify emerging risks before
they manifest as safety incidents 28.

Early Warning Systems: Machine learning models analyse historical patterns to identify conditions that
precede safety events 15.

Risk Forecasting: Predictive models forecast future safety risk levels based on current operational
conditions and historical trends 28.

Intervention Optimization: Al systems can recommend optimal timing and types of safety
interventions based on predicted outcomes 10.

7.4 Future Technology Integration

The crew reporting analytics system architecture supports integration with emerging aviation
technologies:

Internet of Things (10T) Integration: Real-time sensor data from aircraft systems can be correlated with
crew reports to provide comprehensive safety intelligence 32.

Augmented Reality Reporting: Future crew reporting systems may incorporate AR interfaces for
immediate, context-aware safety report submission 9.

Blockchain for Data Integrity: Blockchain technology could provide immutable audit trails for crew
reports and analytical processes 2.

Edge Computing: On-aircraft processing capabilities could enable immediate crew report analysis
during flight operations 32.

Conclusion: Transforming Aviation Safety Through Intelligent Crew Report Analytics

The comprehensive crew report analytics system presented in this guide represents a fundamental
transformation in how aviation safety professionals collect, process, and act upon critical safety
information from frontline crews. By intelligently integrating Excel's data validation capabilities,
Python's advanced analytical power, and Power Bl's real-time visualization platform, aviation
organizations can achieve the dual objectives of immediate report processing and comprehensive
trend identification that modern safety management demands.

Strategic Impact on Aviation Safety

The implementation of this integrated analytical framework delivers measurable improvements in
aviation safety performance through several key mechanisms. Immediate processing capabilities
reduce the time from crew report submission to safety manager awareness from days or weeks to
minutes, enabling rapid response to emerging safety concerns before they escalate. Advanced trend
identification algorithms can detect subtle safety patterns across multiple dimensions - crew type,
aircraft operation, temporal factors, and safety categories - that would be impossible to identify
through traditional manual analysis methods 4 14.

Aviation organizations implementing similar systems report significant improvements in safety
performance metrics: 40% reduction in safety incident response time, 30% increase in crew safety
report submissions due to enhanced feedback mechanisms, and improved regulatory compliance
through automated documentation and trend analysis 9. These improvements translate directly into
enhanced operational safety, reduced safety-related costs, and improved regulatory standing.

Technological Innovation in Safety Management

The system's architecture demonstrates how modern data analysis technologies can be applied to
aviation safety without compromising the critical human judgment that remains essential for safety
decision-making. Excel serves as the trusted foundation, providing familiar data validation and initial
processing capabilities that safety professionals can understand and verify. Python provides the
analytical power necessary for processing thousands of crew reports monthly, identifying patterns
that human analysts would miss, and generating predictive insights that enable proactive safety
management 10 20.

Power Bl delivers the decision support interface that transforms complex analytical outputs into
actionable intelligence for different organizational roles - from safety analysts investigating specific
incidents to executives making strategic safety investment decisions 24 26.

Operational Excellence Through Integration

The system's strength lies not in individual component capabilities, but in the seamless integration
that enables immediate processing alongside comprehensive trend analysis. Crew reports undergo
immediate risk assessment within minutes of submission, while simultaneously contributing to long-
term trend analysis that identifies emerging safety patterns 21 10. This dual capability addresses both
urgent operational needs and strategic safety planning requirements without compromising either
objective.

The natural language processing capabilities enable sophisticated analysis of crew narratives,
extracting safety-relevant information that traditional keyword-based systems cannot identify.
Machine learning algorithms continuously improve their pattern recognition capabilities as they
process more crew reports, becoming increasingly effective at identifying subtle safety trends and
predicting future risks 19 14.

Implementation Success Factors

The successful deployment of this analytical framework depends on several critical implementation
factors. Change management must emphasize how enhanced analytics support rather than replace
safety professional judgment, ensuring organizational acceptance and effective utilization 29 13.
Training programs must build analytical capabilities across the safety organization while maintaining
focus on operational safety requirements 3.

Data quality management remains fundamental to analytical accuracy, requiring automated
validation processes and continuous monitoring to ensure reliable outputs 11. Integration with
existing safety management systems must preserve regulatory compliance and operational continuity
while adding analytical value 13.

Future Evolution and Scalability

The architectural foundation established by this system provides a platform for future technological
enhancements without requiring fundamental system redesign. Artificial intelligence capabilities can
be progressively integrated to provide more sophisticated narrative analysis, predictive modelling, and
automated decision support 10 30. loT integration can correlate crew reports with real-time aircraft
sensor data for comprehensive safety intelligence 32.

Cloud-native deployment options provide scalability for growing report volumes and analytical
complexity, while mobile-optimized interfaces ensure critical safety information remains accessible to
decision-makers regardless of location 24 25.

Return on Investment and Business Value

The business case for comprehensive crew report analytics extends beyond immediate safety
improvements to encompass strategic competitive advantage and operational excellence.
Quantifiable benefits include reduced safety incident costs, improved regulatory compliance, and
enhanced operational efficiency through predictive safety management 28. Strategic benefits include
enhanced safety culture, improved crew confidence in reporting systems, and competitive
differentiation through superior safety performance 34.

The technology investment required for implementation is modest compared to potential safety-
related costs, with most organizations achieving positive return on investment within 12-18 months
through improved safety performance and operational efficiency 11.

Industry Leadership and Best Practices

Aviation organizations implementing comprehensive crew report analytics position themselves as
industry leaders in safety innovation and operational excellence. The proactive safety management

capabilities enabled by this system align with evolving regulatory expectations and industry best
practices that emphasize predictive rather than reactive safety management 13 30.

The analytical capabilities demonstrated in this guide provide a foundation for continuous
improvement in safety performance, enabling organizations to adapt quickly to changing operational
conditions, emerging safety challenges, and evolving regulatory requirements 4 10.

Conclusion

The comprehensive crew report analytics system presented in this guide provides aviation safety
professionals with the tools and methodologies necessary to transform crew safety reporting from a
reactive compliance activity into a proactive strategic capability. The combination of immediate
processing for urgent safety concerns and sophisticated trend identification for strategic safety
planning enables aviation organizations to achieve unprecedented levels of safety performance and
operational excellence.

Organizations ready to begin implementation should focus on establishing robust data validation
processes in Excel, building analytical capabilities through Python integration, and developing role-
specific dashboards through Power Bl deployment. The phased implementation approach ensures that
each stage provides operational value while building capabilities for more advanced features.

The aviation industry's future belongs to organizations that can effectively transform operational data
into strategic safety intelligence. The integrated analytical framework outlined in this guide provides
the technical foundation and implementation strategy necessary for this transformation, enabling
aviation organizations to achieve both immediate safety improvements and long-term competitive
advantage through superior safety performance.

Through careful implementation of these comprehensive analytical capabilities, aviation organizations
can ensure that every crew report contributes not only to immediate safety awareness but also to the
systematic identification of trends and patterns that prevent future safety incidents. This
transformation from reactive to predictive safety management represents the next evolution in
aviation safety excellence, enabled by the intelligent integration of proven analytical technologies
focused specifically on the critical mission of aviation safety.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

https://en.wikipedia.org/wiki/Aviation Safety Reporting System

https://www.asms-pro.com/whatissmspro/confidentialsafetyreportingsystem.aspx

https://aviationsafetyblog.asms-pro.com/blog/8-best-practices-for-aviation-safety-reporting-

systems-a-guide-for-aviation-safety-managers

https://aviationsafetyblog.asms-pro.com/blog/leading-indicators-for-aviation-sms-proactive-
safety-metrics

https://eurecca.eu/health-safety/occurrence-reporting-cabin-crew/

https://skybrary.aero/articles/aviation-safety-reporting-system-asrs

https://asrs.arc.nasa.gov

https://www.icao.int/safety/airnavigation/ops/cabinsafety/pages/safety-management-

systems-(sms)-and-cabin-safety.aspx

https://ifs.aero/ereporting-aviation-safety-transformation/

https://aviationsafetyblog.asms-pro.com/blog/ai-powered-sms-revolutionizing-aviation-
safety

https://aviationsafetyblog.asms-pro.com/blog/10-most-important-reports-to-monitor-safety-

performance-in-sms-programs

https://www.iata.org/en/programs/safety/safety-management-system/

https://www.faa.gov/about/initiatives/sms

https://pmc.ncbi.nlm.nih.gov/articles/PMC9823347/

https://www.linkedin.com/pulse/integrating-machine-learning-algorithms-predictive-safety-

ardestani-idkef

https://www.linkedin.com/posts/umar-aminu-000343183 data-data-pivort-activity-
7215139100784267265-PuzW

https://www.shegxel.com/60-hse-excel-dashboard-templates-for-safety-professionals-in-

2022/

https://github.com/AeroPython/flight-safety-analysis

https://www.mdpi.com/2226-4310/10/9/770

https://journals.sagepub.com/doi/10.1177/03611981241252796

https://flightsafety.org/wp-content/uploads/2016/09/AIRS application.pdf

https://www.youtube.com/watch?v=P7hCX08ygnQ

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

https://www.tinybird.co/blog-posts/python-real-time-dashboard

https://www.klipfolio.com/resources/dashboard-examples/business/airline-dashboard

https://foreflight.com/products/flight-data-analysis/

http://www.teledynecontrols.com/products/aircraft-data-solutions/fda-for-flight-safety-and-

risk-management

https://services.boeing.com/news/flight-data-analytics-news-2023-year-in-review

https://www.numberanalytics.com/blog/predictive-analytics-in-aviation-safety-law

https://sofemaonline.com/about/blog/entry/safety-management-system-introduction-for-

flight-crew-cabin-crew

https://premierscience.com/pjai-25-725/

https://sm4.global-aero.com/articles/is-chatgpt-ready-to-analyze-my-sms-portals-safety-

reports/

https://www.numberanalytics.com/blog/safety-data-analysis-aviation-tech

https://www.icao.int/safety/pages/safety-report.aspx

https://www.iata.org/en/publications/safety-report/

